PIPE DISCHARGE FLOW CALCULATIONS (A DIERS Users Group Round-Robin Exercise)

Joseph C. Leung Leung Inc. (Consultant to Fauske & Associates, LLC)

Presented at: DIERS Users Group Meeting Houston, Texas

October 12-14, 2009

Current Pipe Flow Benchmark

- Pipe discharge mass flux calculations
- HEM (homogeneous-equilibrium model) assumption.
- Same 3 systems, 4 inlet qualities (incl. vapor) $x_0 = 0.0001, 0.01, 0.1, 1.0$
- 2 pipe configurations -

$$\begin{split} N &= K_{en} + 4f_F \ L/D = 1.5 \quad (L/D = 50) \\ N &= K_{en} + 4f_F \ L/D = 5 \qquad (L/D = 225) \\ \end{split}$$
 fully turbulent two-phase, $f_F = 0.005$ (Fanning) sharp-edge entrance, $K_{en} = 0.5$

Horizontal Pipe Discharge Problem

Same identical inlet (two-phase) conditions as the nozzle case.

• Two different piping (frictional) resistance

	Pipe I	Pipe II
D	2.067 in	2.067 in
L/D	50	225
L	8.61 ft	38.8 ft
K _{en}	0.5	0.5
Ν	1.5	5.0

Note - $N = K_{en} + 4f_{TP} L/D$, with $f_{TP} = 0.005$, and $K_{en} = 0.5$

cyclo-Hexane saturated vapor decompression (PR Eos) – ck to see if Xv < 1.0 (condensation)

Ρ		ТС	SL	sv	S mix	Xv	VL	vv	V 2ph
bar a		С	J/moleK	J/moleK	J/moleK	-	m3/kmol	m3/kmol	m3/kmol
	10	182.28	-15.08	35.445	35.445	1.0000	0.136	3.069	3.069
	9	176.25	-18.03	34.365	35.445	1.0206	0.1337	3.424	3.49184
	8	169.69	-21.23	33.193	35.445	1.0414	0.1313	3.863	4.01741
	7	162.49	-24.73	31.919	35.445	1.0622	0.1289	4.422	4.68923
	6	154.46	-28.61	30.514	35.445	1.0834	0.1264	5.157	5.57653
	5	145.36	-32.99	28.956	35.445	1.1047	0.1239	6.171	6.80443
	4	134.76	-38.08	27.194	35.445	1.1264	0.1212	7.665	8.61859
	3	121.91	-44.22	25.156	35.445	1.1483	0.1183	10.102	11.5826
	2	105.21	-52.18	22.707	35.445	1.1701	0.1149	14.832	17.3352
	1	79.96	-64.21	19.564	35.445	1.1896	0.1107	28.372	33.7295

Summary of Isothermal FLASH for Benchmark Two-component Systems

P (bar)	ТС	Xi C2	Yi C2	MWL	MWV	L/F mole	Xv mass
BAR	С	mole frac	mole frac	kg/mole	kg/mole	-	-
10	51.92	0.200	0.9752	86.18	31.806	0.99988	0.0001
10	51.92	0.200	0.9752	86.18	31.806	0.97357	0.0099
10	51.92	0.200	0.9752	86.18	31.806	0.76863	0.1000
						L/F	
P (bar)	тс	Xi N2	Yi N2	MW L	MW V	mole	Xv mass
		mole	mole				
BAR	С	frac	frac	kg/mole	kg/mole	-	-
33	25	0.025	0.9936	82.756	28.36	1.00000	0.0000
33	25	0.025	0.9936	82.756	28.36	0.97108	0.0101
33	25	0.025	0.9936	82.756	28.36	0.75531	0.0999

C2-C7 isothermal FLASH (10 bar,51.9C) xo=0.01

- COMP 1= C2H6, Comp 2= C7H16
- X0(1),X0(2),MWF= 0.2204000 0.7796000 84.74335
- •
- ISOTHERMAL FLASH (converged) RESULTS:
- P(input) = 10.00000 bar
- T(input) = 325.0600 K 51.89999 C
- $X(1), X(2) = 0.1999601 \quad 0.8000399$
- $Y(1), Y(2) = 0.9752654 \quad 2.4734735E-02$
- KBIN(1,2) = 0.01
- $K(1),K(2) = 4.877294 \quad 3.0916872E-02$
- ZL, ZV = 5.0781313E-02 0.9259123
- LL liquid frac= 0.9736363
- $FUGL(1,2) = 9.132528 \quad 0.1732796 \quad bar$
- $FUGV(1,2) = 9.132540 \quad 0.1732796 \quad bar$
- •
- ZL,MWL= 5.0781313E-02 86.17680
- VL,HL,SL= 0.1372390 -2.5702150E+07 -70545.31
- ZV,MWV= 0.9259123 31.80465
- VV,HV,SV= 2.502323 964220.2 -14400.16
- ...LL.......VMIX......HMIX/E3.....SMIX/E3...
- 0.97364 0.19959 -0.249991E+05 -69.06512

C2-C7 isothermal FLASH (10 bar,51.9C) xo=0.1

- COMP 1= C2H6, Comp 2= C7H16
- X0(1),X0(2),MWF= 0.3793000 0.6207000 73.59969
- •
- ISOTHERMAL FLASH (converged) RESULTS:
- P(input) = 10.00000 bar
- T(input) = 325.0800 K 51.92001 C
- $X(1), X(2) = 0.1999080 \quad 0.8000939$
- $Y(1), Y(2) = 0.9752389 \quad 2.4754573E-02$
- KBIN(1,2) = 0.01
- $K(1),K(2) = 4.878444 \quad 3.0939478E-02$
- ZL, ZV = 5.0781257E-02 0.9259216
- LL liquid frac= 0.7686253
- $FUGL(1,2) = 9.132414 \quad 0.1734275 \quad bar$
- $FUGV(1,2) = 9.132404 \quad 0.1734281 \quad bar$
- •
- ZL,MWL= 5.0781257E-02 86.18064
- VL,HL,SL= 0.1372473 -2.5699248E+07 -70534.52
- ZV,MWV= 0.9259216 31.80584
- VV,HV,SV= 2.502502 965489.1 -14395.55
- ...LL.......VMIX......HMIX/E3.....SMIX/E3...
- 0.76863 0.68451 -0.195297E+05 -57.54538

Pipe Flow Formulation

- Constant diameter pipe (continuity) –
 G = ρu = constant
- Energy balance (adiabatic flow) - $H_1 + \frac{1}{2}G_1^2v_1^2 = H_2 + \frac{1}{2}G_2^2v_2^2 = \text{constant}$
- Momentum balance (turbulent flow) vdP + G²vdv + $\frac{4f}{2D}$ G²v²dZ = 0

Expansion Law (Eq. of State)

- Need P-v (pressure sp. volume) relation.
- Normal practice is to use constant H (enthalpy) flash calculation.
- From adiabatic flow starting from stagnation -

$$H_o = H + \frac{1}{2} G^2 v^2$$

a constant H flash assumes K.E. to be small.

General Differential Momentum Balance for Pipe Flow

$$dP + G^2 dv + \frac{1}{2} G^2 v \frac{4f}{D} dZ + \frac{g \cos \theta}{v} dZ = 0$$

Rearranging and moving dZ terms to L.H.S.

$$\frac{G^2 v^2}{v} 4f \frac{dZ}{D} + \frac{g \cos \theta L}{4fL/D} 4f \frac{dZ}{D} = -vdP - G^2 v dv$$

General integral momentum equation can be written as

$$\int \frac{4f}{D} dZ = -\int \frac{vdP + G^2 v dv}{\frac{G^2 v^2}{2} + \frac{g \cos \theta L}{4fL / D}}$$

L.H.S. with f constant becomes 4fL / D = N, total piping resistance. _10-

Horizontal Pipe Discharge for HEM

Here $\cos\theta = 0$, gLcos θ drops out, it is more convenient to rewrite the integral momentum equation explicitly in G as

$$G^{2} = \frac{-\int_{P_{1}}^{P_{2}} \frac{dP}{V}}{\int_{V_{1}}^{V_{2}} \frac{dV}{V} + \frac{1}{2}N}$$
$$G^{2} = \frac{2\int_{P_{2}}^{P_{1}} \frac{dP}{V}}{2\ln\frac{V_{2}}{V_{1}} + N}$$

Thus a P-v expansion law would allow analytical/numerical integration.

<u>Pipe-Segment Numerical Integration</u>

$$\Delta L = -\frac{\overline{v} \Delta P + G^2 \overline{v} \Delta v}{\frac{2f}{D} G^2 \overline{v}^2}$$

where ΔP is pressure increment Δv is incremental specific volume over ΔP \overline{v} is average specific volume in ΔP

Pipe-Flow Computation coupled with FLASH

where Flash would not be constant H but rather obeying the energy eq. below

cycloHEX pipe flow comparison (HEM model calculations)

Case	1a		1b		1c		1d	
	Xo=0.0001		Xo=0.01		Xo=0.1		Xo=1.0	
Po (bar)	10	10	10	10	10	10	10	10
Rho (kg/m3)	603	603	509	509	196	196	27.4	27.4
Ap(in2)	3.355	3.355	3.355	3.355	3.355	3.355	3.355	3.355
4fL/D	1.5	5	1.5	5	1.5	5	1.5	5
Omega (Leung)								
W (kg/s)	10.63	8.50	10.40	8.28	8.69	6.75	4.74	3.53
2-par fit (Leung)								
W (kg/s)	10.47	8.40	10.30	8.20	8.60	6.67	4.83	3.6
Kim (Bayer)								
W (kg/s)	9.45	6.32	9.25	6.22	8.00	5.47	4.69	3.25
HG Fisher								
W (kg/s)	9.97	8.1	9.7	7.83	8.61	6.42	5.04	3.71

-16-

C2-C7 pipe flow comparison (HEM model calculations)

Case	2a		2b		2c		2d	
	Xo=0.0001		Xo=0.01		Xo=0.1		Xo=1.0	
Po (bar)	10	10	10	10	10	10	10	10
Rho (kg/m3)	626	626	425	425	107.5	107.5	12.71	12.71
Ap(in2)	3.355	3.355	3.355	3.355	3.355	3.355	3.355	3.355
4fL/D	1.5	5	1.5	5	1.5	5	1.5	5
Omega (Leung)								
W (kg/s)	16.45	12.72	14.50	11.11	9.08	6.79	3.42	2.53
2-par fit (Leung)								
W (kg/s)	16.40	12.65	14.61	11.19	9.06	6.78	3.42	2.53
Kim (Bayer)								
W (kg/s)	15.43	10.49	13.91	9.56	8.74	6.06	3.32	2.31
HG Fisher								
W (kg/s)	16.14	12.54	14.47	11.14	8.82	6.66	3.51	2.56

-18-

N2-cycloHEX pipe flow comparison (HEM model calculations)

Case	3a		3b		3с		3d	
	Xo=0.0001		Xo=0.01		Xo=0.1		Xo=1.0	
Po (bar)	33	33	33	33	33	33	33	33
Rho (kg/m3)	812	812	674	674	269	269	38.3	38.3
Ap(in2)	3.355	3.355	3.355	3.355	3.355	3.355	3.355	3.355
4fL/D	1.5	5	1.5	5	1.5	5	1.5	5
omega (Leung)								
W (kg/s)	71.37	49.97	58.44	41.73	30.83	22.64	10.97	8.09
2-par fit (Leung)								
W (kg/s)	70.48	49.41	57.98	41.45	30.79	22.58	10.95	8.09
Kim (Bayer)								
W (kg/s)	68.76	47.24	56.80	39.29	29.94	20.82	10.57	7.35
HG Fisher								
W (kg/s)	68.96	48.44	57.24	40.96	30.41	22.44	11.61	8.34

Final Call for Participation

- In-house program for pipe flow
- SIMSCI module for two-phase flow
- SuperChem
- SuperChem DIERS Lite
- ASPEN
- Submit to Joe Leung (design/testing chair) <u>aleungine</u> <u>acox.net</u> or Harold Fisher before next DIERS UG mtg